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Compactlike breathers: Bridging the continuous with the anticontinuous limit

M. Eleftheriou, B. Dey,* and G. P. Tsironis
Department of Physics, University of Crete and Foundation for Research and Technology–Hellas,

P. O. Box 2208, 71003 Heraklion, Crete, Greece
~Received 23 December 1999!

We consider discrete nonlinear lattices characterized by on-site nonlinear potentials and nonlinear dispersive
interactions that, in the continuous limit, support exact compacton solutions. We show that the compact support
feature of the solutions in the continuous limit persists all the way to the anticontinuous limit. While in the
large coupling regime the compact discrete breather solution retains the essential simple cosinelike compacton
shape, in the close vicinity of the anticontinuous limit it acquires a spatial shape characterized by a fast
stretched exponential decay, preserving thus its essentially compact nature. The discrete compact breathers in
the anticontinuous limit are generated through a numerically exact procedure and are shown to be generally
stable.

PACS number~s!: 41.20.Jb, 63.20.Ry, 63.20.Pw
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Intrinsic localized modes or discrete breathers are lo
ized modes in translationally invariant lattices of nonline
oscillators that are induced as a result of the coexistenc
nonlinearity with lattice discreteness@1–6#. Intense work
during the last ten years has addressed and resolved in m
cases issues regarding their rigorous existence, nume
construction, stability, dynamics, thermodynamics, quant
aspects, and very recently also experimental manifestatio
specific materials@7#. One aspect that discrete breathe
seem to share in most cases studied so far with linear lo
ized modes appearing in disordered systems is the typ
spatial exponential profile giving rise to a characteristic n
linear localization length@2,4,6#. In the present work we
show that this need not be the case in general, and in
discrete breathers with compactlike support can be c
structed provided the dispersive interoscillator interact
becomes nonlinear. These compactlike breathers~CB’s!
share some of the usual intrinsic localized mode propert
and in particular they can be discrete while, under some
cumstances, they can also be mobile. Furthermore, e
though in appropriate continuous limits the discrete eq
tions of motion become partial differential equations w
compacton solutions@8#, we show that CB’s are not nece
sarily the discrete versions of the latter.

We consider a set of coupled nonlinear oscillators wit
Hamiltonian in one dimension:

H5(
n

S 1

2
u̇n

21
k1

2
~un112un!2

1
k2

a11
~un112un!a111V~un! D , ~1!

where the exponenta can in general be noninteger, the p
tentialV(un) is a nonlinear on-site potential,un(t)[un is the
displacement of thenth unit mass oscillator from its equilib
rium position at timet,u̇n is the corresponding velocity, an
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k1 ,k2 determine the strengths of the linear and nonlin
nearest neighbor couplings, respectively. The equation
motion for the displacement at siten are

ün2k1@un111un2122un#2k2@~un112un!a

2~un2un21!a#1V8~un!50. ~2!

For the analysis that follows we will use primarily three d
ferent potentials, the~soft! double well potential given by
V(un)5 1

4 (12un
2)2, the ‘‘hard’’ f4 potentialV(un)5 1

2 un
2(1

1 1
2 un

2), and also the soft Morse potentialV(un)5 1
2 (1

2exp@2un#)
2. Furthermore, we will not study the gener

case of arbitrary exponenta, but deal, as in Refs.@9–11#
with a more restricted case, focusing hereafter ona53,
which coincides with one of the celebrated Fermi-Pas
Ulam problem studies.

Let us start our analysis from the vicinity of the antico
tinuous limit @2#. In order to construct a nonlinear localize
mode of frequencyvb on the discrete lattice we use th
standard procedure starting from a trivial breather of
same frequency at the anticontinuous limit (k15k250) and
analytically continuing the latter to finite couplings. Furthe
more, the linear stability of the mode at each coupling va
can be obtained through the eigenvalue analysis of the
quet matrix of the tangent map associated with the map g
erated by the solution of Eqs.~2! when the latter are evalu
ated at times that are multiples of the breather period@4#. The
resulting spatial breather distributions in a semilogarithm
plot for the three potentials considered are depicted in Fig
where, in each subplot, there is a comparison between
ventional exponentially decaying discrete breathers in a
tice with purely linear dispersive coupling term (k1Þ0 and
k250) and those with nonlinear coupling, i.e., fork150 and
k2Þ0. We note that in all three potential cases the prese
of a purely linear dispersive coupling leads to a clear spa
exponential decay, while nonlinear dispersive coupling
sults in extremely fast spatial decay to zero. This feature
fast decay to zero within a few sites from the central breat
site is a feature stemming from the nonlinear dispersive te
e,
7540 ©2000 The American Physical Society
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and is found generically with different nonlinear on-site p
tentials and coupling constants.

Let us define heuristically a cutoff, than which small
values can be essentially considered as zero. Let this cu
number ucut'10250 in dimensionless units. We note th
using this cutoff the extent of the breather for nonlinear d
persive coupling is hardly larger than a few sites whereas

FIG. 1. Spatial compact breather configuration in a semilo
rithmic plot. The horizontal axis is the site number, assuming t
the central breather site is atn510, while the vertical axis is the
logarithm of the oscillation amplitude ln(un). In ~a! for the double
well potential breather withvb51.045, solid linek150,k250.1,
dashed linek150.1,k250. In ~b! hard f4 potential breather with
vb51.318, solid linek150,k250.1 ~with fitted exponential stretch
ing exponents54.93), and dashed linek150.1,k250. In ~c! Morse
potential breather withvb50.834, solid line k150,k250.1(s
55.94) and dashed linek150.1,k250. For all three nonlinear dis
persive cases we show amplitude points that are strictly non
even though they are very small.
-

off

-
e

corresponding ones with linear dispersive coupling are m
wider. Furthermore, while the exponentially decaying d
crete breathers have a long tail, compact breathers are c
acterized by a dramatic decay and essential absence of
tail. In this sense the breathers generated close to the
continuous limit on a lattice with purely nonlinear dispersi
interaction can be termed compact. It is important to str
that the amplitude of discrete CB’s decays extremely f
with a stretched exponential lawun'exp@2gns# character-
ized by an exponents.4 for the cases studied. We foun
using standard fitting procedures that this decay law fits b
not only the cases studied in this work but also the ear
data given in Ref.@4# for the pure Fermi-Pasta-Ulam lattic
(s'4). On the other hand, this decay law is markedly d
ferent from the superexponential decay proposed using
proximate arguments for similar problems@11#. The latter
functional form not only does not seem to fit the gene
shape of the compact breather but also clearly misses
initial slope of the decay.

In addition to the generation of CB’s from the antico
tinuous limit it is also possible to study their linear stabili
for different values of the coupling constantk2 of the non-
linear dispersive interaction. In Fig. 2 we present two ca
using the Morse potential, for different values ofk2, as well
as their associated stability diagrams portraying the Floq
spectrum of eigenvalues of the CB tangent maps. We n
that, while fork250.1 the CB is stable, in the correspondin
case of much larger couplingk254.5 the breather is no
linearly stable since two pairs of Floquet eigenvalues
lying outside the unit circle. Once these numerically ex
CB’s are used as initial conditions for the equations of m
tion Eq. ~2!, the resulting dynamics portrays the time evol
tion of the compact breather. In Figs. 3~a! and 3~b! we show

-
t

ro

FIG. 2. Initial compact breather shape and stability (vb

50.834). In ~a! we show the spatial distribution of the compa
breather of the Morse potential fork150,k250.1, and in~b! the
eigenvalues of the Floquet matrix of the tangent map to the
generation map. They fall on the unit circle and thus the CB so
tion is linearly stable. In~c! we show the spatial distribution of a
linearly unstable compact breather for the same on-site potentia
k150,k254.5. In ~d! two pairs of Floquet eigenvalues of th
breather in~c! lie outside the unit circle.
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the time evolution of the two CB’s shown in Figs. 2~a! and
2~c! after a reasonably long time from the beginning of t
evolution. In the case of Fig. 3~a! we observe that for the
linearly stable CB of Fig. 2~a! the compact shape of th
solution survives for long times accompanied by a rema
able absence of radiation emission. In the case of the line
unstable breather of Fig. 2~c!, on the other hand, we observ
in Fig. 3~b! a slow decay followed by the emission of radi
tion. We note that similar results have been verified for
cases of the other potentials studied in this work.

Let us now come to the vicinity of the continuous lim
The continuum equation is obtained in the usual way thro
the approximation of the dispersive terms with a series
volving derivatives of the unknown wave amplitude functi
and truncation of the series in an appropriate order. For
f4 type of on-site potential, it is possible to derive the ex
compacton breather solutions of the continuum equations
see this, we expandun61 up to fourth order in a Taylor serie
to get the continuum equation corresponding to Eq.~2! for
a53 andk150 as

]2u

]t2
53k2S ]u

]xD 2]2u

]x2
2u2u3. ~3!

Using the ansatzu(x,t)5G(t)f(x) for the compact breathe
solution and substituting it in Eq.~3! above, we get the equa
tions for f(x) andG(t), respectively, as

3k2fx
2fxx2f31Cf50, ~4!

G̈1G1CG350, ~5!

whereC is an arbitrary constant. It can easily be checked t
the solutions of Eqs.~4! and ~5! give a compacton breathe
solution for the continuum equation corresponding to Eq.~2!
as

FIG. 3. In ~a! we use the compact breather of Fig. 2~a!, k1

50,k250.1, as initial condition for the positions and taking also t
initial velocities as zero we find numerically its evolution in tim
We note that the breather remains compact at subsequent timt
59535126.6T, whereT is the breather period! while no discern-
ible emission of radiation is observed, signifying that the CB i
numerically exact solution of the equations of motion. In~b! we use
the compact breather of Fig. 2~c!, k150,k254.5, as initial condition
for the positions and taking also the initial velocities zero we fi
numerically its evolution in time. We note the clear presence
radiation that eventually leads to breather decay (t5126.6T).
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u~x,t !55
A cos~Bx! cnS ~A212!1/2wt

A2
,k2D

for uBxu<
p

2

50 otherwise,

~6!

where the inverse width of the compactonB5(1/3k2)1/4,k
5A/@2(21A2)#1/2, and cn is a Jacobian elliptic function o
time. We have also checked that compacton solutions of
same shape as in Eq.~6! ~with different A and B) are also
allowed when we retain the next higher order dispers
terms in Eq.~3! ~sixth order in the Taylor series expansion!.
Now we consider the case whenk1Þ0. To get the compac-
ton breather solutions in this case we use the ansatzun(t)
5Afncoswt, where w is the frequency of the compacto
breather. Expandingfn61 up to fourth order in the Taylor
series and using the rotating wave approximation, we get
continuum equation corresponding to Eq.~2! as

k1S fxx1
1

12
f4xD1

9

4
k2A2fx

2fxx

2~11w2!f2
3

4
A2f350. ~7!

Again, it can easily be checked that the compacton solu
to the above equation is given byf(x)5A cos(Bx) for
uBxu<p/2 and whereB5(1/6k2)1/4 and thus the compacto
breather solution in this case is given byu(x,t)
5A cos(Bx)coswt. We would like to point out that the firs
derivatives of these solutions are discontinuous at the e
and hence the compacton solutions presented here mu
understood in the weak sense. The robustness of these
pacton solutions is yet unknown. However, as reported
Rosenau~see Ref.@12# in @8~b!#!, extensive numerical stud
ies of the continuum equations indicate that compac
smoothness at the edge is not indicative of stability.

Recent work@12# has shown that a class of exact contin
ous compacton solutions of a low order continuous appro
mation of the discrete equations survive in general when s
stituted in the discrete equations of motion of Eq.~2!. What
is remarkable is that according to Ref.@12# the continuous
cosinelike compacton solutions seem to represent quite
breather solutions in highly discrete regimes far from t
continuous limit. One obvious question then relates to
connection between the discrete cosinelike solutions of R
@12# and the single breathers obtained here through gen
tion from the anticontinuous limit. While the latter do no
have a cosine shape, they do indeed have a bounded sup
in the sense described previously. Furthermore, they ar
general quite stable for very long times. The cosinelike d
crete breathers, on the other hand, while describing
proper bounded solutions in the regime close to the cont
ous limit, do not seem to have the feature of long-term s
bility in the opposite limit, even though for relatively sho
times they too seem to be quite stable. For instance, in

case of a CB for the hard potentialV(un)54(1001
2 un

2

1 1
4 un

4) having a width of 57 sites@12#, peak amplitude 0.1,
and periodT'0.3, we found through simulations that

(
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starts losing its shape after approximately 100 periods
oscillation. While it does not seem to collapse at these tim
nevertheless it develops distortions in the tail. In gene
however, we also find that the essential effect of the non
ear dispersive interaction is to introduce a truncation mec
nism leading to more compact localized solutions with sm
or negligible tails. Thus, compact solutions are favored a
in the continuous limit and can survive quite well for sho
times even if they are not the exact discrete solutions.

Another outstanding issue regarding discrete breather
general and thus also discrete CB’s is their mobility. In
cent work, it has been shown numerically that it is possi
to excite breathers in soft on-site potentials through antis
metric linear modes and thus render them mobile@5#. While
this approach does not provide exact moving breather s
tions, if there are any, it nevertheless demonstrates cle
and systematically mobility properties of discrete breathe
In the case of CB’s, one expects reduced mobility capab
ties since the discontinuity between the excited and non
cited lattice sites necessitates substantial initial depinning
ergy that quickly destroys the compact breather. As a res
discrete CB’s are much more immobile than the usual ex
nentially decaying discrete breathers of soft nonlinear po
tials. A numerical search for the case of the Morse poten
discrete CB’s has shown some traces of mobility, which
however, substantially reduced compared to that of conv
tional Morse discrete breathers. While discrete CB’s c
move, their motion has a short duration and also does
seem to be as uniform as that of the usual discrete breat
More work in this direction is necessary.

Finally, let us discuss the case of the combined prese
of both linear and nonlinear dispersive coupling. As has a
been noted elsewhere@11,12#, linear coupling does indee
overtake nonlinear and thus the resulting breathers are
compact. However, this change from a compact to an ex
nential decaying breather does not happen automaticall
soon as we include linear dispersive coupling. In Fig. 4
show on a semilogarithmic scale the spatial decay of disc
breathers close to the anticontinuous limit with simultane
nonlinear and linear coupling. We note that when linear c
pling is sufficiently small the discrete breather becomes p
gressively more extended, although it does not acquire
mediately an exponentially decaying shape. For largerk1
values the linear dispersive term overtakes the nonlinear
and the resulting breather has the standard exponential

In closing, compactlike breathers exist in the whole ran
from strong to intermediate to the weak coupling regim
provided the interaction between the nonlinear oscillator
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nonlinear and dispersive. While in the continuous limit t
compact breathers are exact compacton solutions with s
bounded support, in the other extreme of the anticontinu
limit the compactlike breathers are characterized by a v
fast stretched exponential decay giving rise to an essent
bounded support. These discrete compact breathers are
erally stable and in some cases also show mobility prop
ties. In the intermediate nonlinear coupling regime, breath
with bounded support also exist but their stability and sha
depend strongly on the parameter regime and breather
quency. The inclusion of linear dispersive coupling additio
ally to the nonlinear coupling progressively turns comp
breathers into conventional exponentially decaying ones.
note that compact breathers would be ideal for energy s
age since due to the lack of an exponential tail they inter
extremely weakly with each other, thus substantially incre
ing their lifetime.
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FIG. 4. Combined action ofk1 andk2 springs. Spatial breathe
configuration in a semilogarithmic plot. The horizontal axis is t
site number, assuming that the central breather site is atn510,
while the vertical axis is the logarithm of the oscillation amplitu
ln(un). All the cases are for a Morse on-site potential and fo
breather withvb50.919. k250.1 while for k1 we have~a! k150,
~b! k155310215, ~c! k155310211, ~d! k15531027, ~e! k155
31025, ~f! k15531024. In ~g! k150.1,k250.
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