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Compactlike breathers: Bridging the continuous with the anticontinuous limit
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We consider discrete nonlinear lattices characterized by on-site nonlinear potentials and nonlinear dispersive
interactions that, in the continuous limit, support exact compacton solutions. We show that the compact support
feature of the solutions in the continuous limit persists all the way to the anticontinuous limit. While in the
large coupling regime the compact discrete breather solution retains the essential simple cosinelike compacton
shape, in the close vicinity of the anticontinuous limit it acquires a spatial shape characterized by a fast
stretched exponential decay, preserving thus its essentially compact nature. The discrete compact breathers in
the anticontinuous limit are generated through a numerically exact procedure and are shown to be generally
stable.

PACS numbsd(s): 41.20.Jb, 63.20.Ry, 63.20.Pw

Intrinsic localized modes or discrete breathers are localk,,k, determine the strengths of the linear and nonlinear
ized modes in translationally invariant lattices of nonlinearnearest neighbor couplings, respectively. The equations of
oscillators that are induced as a result of the coexistence ahotion for the displacement at siteare
nonlinearity with lattice discretenedd—6]. Intense work
during the last ten years has addressed and resolved in many .
cases issues regarding their rigorous existence, numerical Up—Kq[Un gt Un-1=2Un] = Kp[ (Un1—Un)®
construction, stability, dynamics, thermodynamms_, quantum —(Uy—U,_ 1)+ V' (u,)=0. @)
aspects, and very recently also experimental manifestation in
specific materialg7]. One aspect that discrete breathers
seem to share in most cases studied so far with linear locaFor the analysis that follows we will use primarily three dif-
ized modes appearing in disordered systems is the typicdgrent potentials, thésoft) double well potential given by

. . . . . .- _1 YAV “ " 4 . _ 1,2
spatial exponential profile giving rise to a characteristic nonV(u,)=3(1—up)<, the *hard” ¢ potentialV(u,)=zup(1
linear localization lengtt{2,4,6]. In the present work we +3u?), and also the soft Morse potential(u,)=3(1
show that this need not be the case in general, and in fact exd —u,])?>. Furthermore, we will not study the general
discrete breathers with compactlike support can be concase of arbitrary exponent, but deal, as in Refd9-11]
structed provided the dispersive interoscillator interactionyith a more restricted case, focusing hereafter con 3,
becomes nonlinear. These compactlike breath@B’'s)  which coincides with one of the celebrated Fermi-Pasta-
share some of the usual intrinsic localized mode propertiesJlam problem studies.
and in particular they can be discrete while, under some cir- et us start our analysis from the vicinity of the anticon-
cumstances, they can also be mobile. Furthermore, eveghuous limit[2]. In order to construct a nonlinear localized
though in appropriate continuous limits the discrete equamode of frequencyw, on the discrete lattice we use the
tions of motion become partial differential equations with standard procedure starting from a trivial breather of the
compacton solution8], we show that CB’s are not neces- same frequency at the anticontinuous lim € k,=0) and

sarily the discrete versions of the latter. _ _analytically continuing the latter to finite couplings. Further-
We consider a set of coupled nonlinear oscillators with amore, the linear stability of the mode at each coupling value
Hamiltonian in one dimension: can be obtained through the eigenvalue analysis of the Flo-
quet matrix of the tangent map associated with the map gen-
_ 1 2 ﬁ 2 erated by the solution of Eq§2) when the latter are evalu-
H=2 | SU3+ 5 (Unsy—Up) . :
no\2 2 ated at times that are multiples of the breather pddddThe

resulting spatial breather distributions in a semilogarithmic
+£(u — U+ V(up) 1) plot for the three potentials considered are depicted in Fig. 1,
at1 Nt 0 ") where, in each subplot, there is a comparison between con-
. ) ventional exponentially decaying discrete breathers in a lat-
where the exponent can in general be noninteger, the po- tice with purely linear dispersive coupling terrk,60 and
tentialV(up) is a nonlinear on-site potential,(t)=u,isthe  ,=0) and those with nonlinear coupling, i.e., for=0 and
displacement of theth.unit mass oscillator from its equilib- k,#0. We note that in all three potential cases the presence
rium position at timet,u,, is the corresponding velocity, and of a purely linear dispersive coupling leads to a clear spatial
exponential decay, while nonlinear dispersive coupling re-
sults in extremely fast spatial decay to zero. This feature of
*Permanent address: Department of Physics, University of Pundast decay to zero within a few sites from the central breather
Pune 411007, India. site is a feature stemming from the nonlinear dispersive term
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FIG. 2. Initial compact breather shape and stability, (
=0.834). In(a) we show the spatial distribution of the compact
breather of the Morse potential fé;=0k,=0.1, and in(b) the
eigenvalues of the Floquet matrix of the tangent map to the CB
generation map. They fall on the unit circle and thus the CB solu-
tion is linearly stable. Inc) we show the spatial distribution of a
linearly unstable compact breather for the same on-site potential for
k;=0k,=4.5. In (d) two pairs of Floquet eigenvalues of the
breather in(c) lie outside the unit circle.

corresponding ones with linear dispersive coupling are much
wider. Furthermore, while the exponentially decaying dis-
crete breathers have a long tail, compact breathers are char-
acterized by a dramatic decay and essential absence of any
tail. In this sense the breathers generated close to the anti-
continuous limit on a lattice with purely nonlinear dispersive
interaction can be termed compact. It is important to stress
that the amplitude of discrete CB’s decays extremely fast
with a stretched exponential law,~exd —yn°] character-

ized by an exponerg>4 for the cases studied. We found
using standard fitting procedures that this decay law fits best

not only the cases studied in this work but also the earlier
data given in Ref[4] for the pure Fermi-Pasta-Ulam lattice
(s=4). On the other hand, this decay law is markedly dif-

FIG. 1. Spatial compact breather configuration in a SemilogaTerent from the superexponential decay proposed using ap-
rithmic plot. The horizontal axis is the site number, assuming thatproximate arguments for similar problerfisl]. The latter
the central breather site is at=10, while the vertical axis is the |

: I ) functional form not only does not seem to fit the general
logarithm of the oscillation amplitude Iaf). In (a) for the double :
well potential breather withop=1.045, solid linek,=0k,=0.1, shape of the compact breather but also clearly misses the

dashed linek;=0.1k,=0. In (b) hard ¢* potential breather with initial S'OP? of the decay. . , .
wy—1.318, solid Iind§1=0,k2=0.1(witr(1ﬁ fted exponential stretch- " addition fo the generation of CB's from the anticon-
ing exponens=4.93), and dashed lig =0.1k,=0. In (c) Morse tinuous limit it is also possible to study their linear stability
potential breather withw,=0.834, solid line k,=0k,=0.1(s  for different values of the coupling constaky of the non-
=5.94) and dashed linke,=0.1k,=0. For all three nonlinear dis- linear dispersive interaction. In Fig. 2 we present two cases
persive cases we show amplitude points that are strictly nonzerdSing the Morse potential, for different valueslgf as well
even though they are very small. as their associated stability diagrams portraying the Floquet
spectrum of eigenvalues of the CB tangent maps. We note
and is found generically with different nonlinear on-site po-that, while fork,=0.1 the CB is stable, in the corresponding
tentials and coupling constants. case of much larger coupling,=4.5 the breather is not
Let us define heuristically a cutoff, than which smaller linearly stable since two pairs of Floquet eigenvalues are
values can be essentially considered as zero. Let this cutolying outside the unit circle. Once these numerically exact
number ug,~10*° in dimensionless units. We note that CB’s are used as initial conditions for the equations of mo-
using this cutoff the extent of the breather for nonlinear distion Eq.(2), the resulting dynamics portrays the time evolu-
persive coupling is hardly larger than a few sites whereas thtion of the compact breather. In FiggaBand 3b) we show
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(AZ+2)Yant
AcogBx) cn| ————— k?
2
ux,t)= T (6)
for |IBX|< =
2
=0 otherwise,

where the inverse width of the compactBnr= (1/3k,)Y* k

_ =A/[2(2+A?)]*¥2 and cn is a Jacobian elliptic function of
FIG. 3. In (@) we use the compact breather of Figa2 ki time \We have also checked that compacton solutions of the

=0k,=0.1, as initial condition for the positions and taking also the same shape as in E) (with different A andB) are also

initial velocities as zero we find numerically its evolution in time. llowed when we retain the next higher order dispersion

We note that the breather remains compact at subsequent imes .\, £ (3) (sixth order in the Taylor series expansion

=953=126.6T, whereT is the breather perigdvhile no discern- N ider th hé&n+0. T t th

ible emission of radiation is observed, signifying that the CB is a ow We consider . € Cfise W i70. 10 get the compac-

ton breather solutions in this case we use the ansgtd

numerically exact solution of the equations of motion(bhwe use ™ .
the compact breather of Fig(@, k, =0k, =4.5, as initial condition ~ —A®nCOSWt, wherew is the frequency of the compacton

for the positions and taking also the initial velocities zero we findPreather. Expanding,..; up to fourth order in the Taylor
numerically its evolution in time. We note the clear presence ofS€ries and using the rotating wave approximation, we get the

radiation that eventually leads to breather deday126.67). continuum equation corresponding to E2) as
. . , - 1 9

the time evolution of the two _CB s shown in Flgs(.g)? and Kyl bt 1_2¢4X + Zk2A2¢>2<¢xx

2(c) after a reasonably long time from the beginning of the

evolution. In the case of Fig.(& we observe that for the 3

linearly stable CB of Fig. @ the compact shape of the —(1+w?) ¢p— —A%2¢%=0. (7)
solution survives for long times accompanied by a remark- 4

able absence of radiation emission. In the case of the Iinearlx L , .
unstable breather of Fig(®, on the other hand, we observe ~9@in, it can easily be checked that the compacton solution
in Fig. 3(b) a slow decay followed by the emission of radia- 1© the above equation is given b (x) = A cos@x) for

tion. We note that similar results have been verified for thd BX/= 7/2 and whereB=(1/6k,)"" and thus the compacton
cases of the other potentials studied in this work. breather solution in this case is given by(x,t)

Let us now come to the vicinity of the continuous limit. =A coSBXcoswt. We would like to point out that the first
The continuum equation is obtained in the usual way througﬁierlvatlves of these solutions are discontinuous at the edge
the approximation of the dispersive terms with a series innd hence the compacton solutions presented here must be
volving derivatives of the unknown wave amplitude function Understood in the weak sense. The robustness of these com-

and truncation of the series in an appropriate order. For thBacton solutions is yet unknown. However, as reported by
¢* type of on-site potential, it is possible to derive the exact0senausee Ref[12] in [8(b)]), extensive numerical stud-
compacton breather solutions of the continuum equations. TS ©f the continuum equations indicate that compacton

see this, we expand,.. , up to fourth order in a Taylor series smoothness at the edge is not indicative of stability. _
to get the continuum equation corresponding to &y.for Recent worK 12] has shown that a class of exact continu-
a=3 andk,=0 as ous compacton solutions of a low order continuous approxi-

mation of the discrete equations survive in general when sub-

stituted in the discrete equations of motion of E2). What

252 is remarkable is that according to R¢L2] the continuous
o, u- u®. 3 cosinelike compacton solutions seem to represent quite well
X breather solutions in highly discrete regimes far from the
continuous limit. One obvious question then relates to the

Using the ansata(x,t) = G(t) ¢(x) for the compact breather connection between the discrete cosinelike solutions of Ref.

solution and substituting it in E43) above, we get the equa- [12] and the single breathers obtained here through genera-
tions for ¢(x) andG(t), respectively, as tion from the anticontinuous limit. While the latter do not

have a cosine shape, they do indeed have a bounded support,
in the sense described previously. Furthermore, they are in
3Kz pux— ¢+ Cp=0, (4 general quite stable for very long times. The cosinelike dis-
crete breathers, on the other hand, while describing the
.. proper bounded solutions in the regime close to the continu-
G+G+CG*=0, (5 ous limit, do not seem to have the feature of long-term sta-
bility in the opposite limit, even though for relatively short

whereC is an arbitrary constant. It can easily be checked thatmes they too seem to be quite stable. For instance, in the

the solutions of Eqs(4) and (5) give a compacton breather case of a CB for the hard potentiaf(u,)=4(100;u;
solution for the continuum equation corresponding to ®y.  + 3u?) having a width of 57 sitef12], peak amplitude 0.1,
as and periodT~0.3, we found through simulations that it

J°u Ju
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starts losing its shape after approximately 100 periods of 04
oscillation. While it does not seem to collapse at these times,
nevertheless it develops distortions in the tail. In general,
however, we also find that the essential effect of the nonlin-
ear dispersive interaction is to introduce a truncation mecha-
nism leading to more compact localized solutions with small
or negligible tails. Thus, compact solutions are favored also
in the continuous limit and can survive quite well for short
times even if they are not the exact discrete solutions.
Another outstanding issue regarding discrete breathers in
general and thus also discrete CB’s is their mobility. In re-
cent work, it has been shown numerically that it is possible
to excite breathers in soft on-site potentials through antisym- S0 e 15 18 i 15 9 20
metric linear modes and thus render them mofdle While site
this approach does not provide exact moving breather solu-
tions, if there are any, it nevertheless demonstrates clearly FIG. 4. Combined action df; andk, springs. Spatial breather
and systematically mobility properties of discrete breathersconfiguration in a semilogarithmic plot. The horizontal axis is the
In the case of CB'’s, one expects reduced mobility capabilisite number, assuming that the central breather site is=at0,
ties since the discontinuity between the excited and nonexwhile the vertical axis is the logarithm of the oscillation amplitude
cited lattice sites necessitates substantial initial depinning enrA(u,). All the cases are for a Morse on-site potential and for a
ergy that quickly destroys the compact breather. As a resulfreather withw,=0.919.k,=0.1 while fork, we have(a) k,;=0,
discrete CB'’s are much more immobile than the usual expot) ky=5X10"", (c) ky=5X10"*", (d) k;=5x10"", () ky=5
nentially decaying discrete breathers of soft nonlinear potenx10~°, (f) k;=5X10"*. In (g) k;=0.1k,=0.
tials. A numerical search for the case of the Morse potential
discrete CB's has shown some traces of mobility, which isponlinear and dispersive. While in the continuous limit the
however, substantially reduced compared to that of conversompact breathers are exact compacton solutions with strict
tional Morse discrete breathers. While discrete CB's caryqonded support, in the other extreme of the anticontinuous
move, their motion has a short duration and also does nQf;t the compactlike breathers are characterized by a very
seem to be as uniform as that of the usual discrete breathetgs; siretched exponential decay giving rise to an essentially
More work in this direction is necessary. _ bounded support. These discrete compact breathers are gen-
Finally, let us discuss the case of the combined presencg |y stable and in some cases also show mobility proper-
of both linear and nonlinear dispersive coupling. As has alsgjes | the intermediate nonlinear coupling regime, breathers
been noted elsewhefd1,13, linear coupling does indeed \yith hounded support also exist but their stability and shape
overtake nonlinear an'd thus the resulting breathers are ”Htepend strongly on the parameter regime and breather fre-
compact. However, this change from a compact to an expogyency. The inclusion of linear dispersive coupling addition-
nential decaying breather does not happen automatically &gy ¢ the nonlinear coupling progressively turns compact
soon as we include linear dispersive coupling. In Fig. 4 Weyreathers into conventional exponentially decaying ones. We
show on a semilogarithmic scale the spatial decay of discretgyie that compact breathers would be ideal for energy stor-
breathers close to the anticontinuous limit with simultaneou%lge since due to the lack of an exponential tail they interact

nonlinear and linear coupling. We note that when linear cougyiremely weakly with each other, thus substantially increas-
pling is sufficiently small the discrete breather becomes PrOing their lifetime.

gressively more extended, although it does not acquire im-
mediately an exponentially decaying shape. For laidger We thank Sergei Flach for useful discussions and for
values the linear dispersive term overtakes the nonlinear ongointing out relevant references on the issues addressed in
and the resulting breather has the standard exponential taithis work. We acknowledge partial support from INTAS

In closing, compactlike breathers exist in the whole rangeGrant No. 96-0158 as well as support from the University of
from strong to intermediate to the weak coupling regimeCrete. B.D. wishes to thank UGC for financial assistance
provided the interaction between the nonlinear oscillators ishrough the grant of a UGC Research Award Scheme.
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